正十二面體
正十二面體
(按這裡觀看旋轉模型)
類別正多面体
對偶多面體正二十面體
識別
名稱正十二面體
參考索引U23, C26, W5
數學表示法
施萊夫利符號{5,3}
性質
12
30
頂點20
歐拉特徵數F=12, E=30, V=20 (χ=2)
二面角116.56505° = arccos(-1/√5)
組成與佈局
面的種類正五邊形
面的佈局
英语Face configuration
12{5}
頂點圖5.5.5
對稱性
對稱群3
特性
多面體
圖像
Dodecahedron vertfig.png
5.5.5
頂點圖
Dodecahedron flat.svg
(展開圖)

正十二面體是由12正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号{5,3}所表示,与正二十面体互成对偶。它是一种只具有正四面体对称性英语tetrahedral symmetry五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有正八面体对称性英语Octahedral Symmetry卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體

Uniform polyhedron-53-t0.png
十二面體
Dodekaeder-Animation.gif
正十二面體是正二十面體對偶多面體

性质

面的图形:正五边形
面的数目:12
边的数目:30
顶点数目:20
二面角角度:
如果正十二面体棱长为a:
表面积:
体积:
外接球半径:
内切球半径:
中交球半径:

  • 我们亦可以将上述三式写作:
外接球半径:
内切球半径:
中交球半径:
(在这里φ黄金分割数φ = 1+√5/2
  • 注意到棱长为a的正十二面体的外接球同样外接于棱长为φa的立方体,并且其内切球半径(也即面心距)等于棱长为φa的正五边形的边心距

对偶多面体:正二十面体

坐标系

顶点坐标:
  橙色的顶点位于(±1, ±1, ±1),形成了其一个内接立方体(虚线所示)。
  绿色的顶点位于(0, ±φ, ±1/φ),形成了yz平面上的一个黄金矩形
  蓝色的顶点位于(±1/φ, 0, ±φ),形成了xz平面上的一个黄金矩形
  粉色的顶点位于(±φ, ±1/φ, 0),形成了xy平面上的一个黄金矩形
相邻顶点间的距离是2/φ,顶点到原点的距离是√3.
φ = (1 + √5) / 2是黄金分割数。

如果我们以正十二面体的形心为原点建立三维直角坐标系,那么其20个顶点可被描述为:
(0,±φ,±1/φ)
(±1/φ,0,±φ)
(±φ,±1/φ,0)
(±1,±1,±1)
其中φ = (1+√5)/2,是黃金分割數,也被写作τ,约等于1.618。
该正十二面体棱长为2/φ=√5–1。其外接球半径正好为√3。

二维投影和对称性

正十二面体有两种特殊的正交投影,分别正对着其一个顶点和一个正五边形面,对应着A2和H2考克斯特平面英语Coxeter plane

正交投影
正对于 顶点
图像 Dodecahedron t0 A2.png Dodecahedron t0 e.png Dodecahedron t0 H3.png
投影
对称性
[[3]] = [6] [2] [[5]] = [10]

透视投影中,如果如果投影中心正在正十二面体外接球正对其一面的一点,则你能得到其施莱格尔图像英语schlegel diagram,我们亦可以将其视为球面多面体英语Spherical polyhedron而使用球极投影。这些方法也被用于可视化其四维类比正一百二十胞体,一个由120个全等的正十二面体组成的四维凸正多胞体

投影 正交投影 透视投影
施莱格尔图像英语schlegel diagram 球极投影
正十二面体 Dodecahedron t0 H3.png Dodecahedron schlegel diagram.png Dodecahedron stereographic projection.png
正120胞体 120-cell t0 H3.svg Schlegel wireframe 120-cell.png Stereographic polytope 120cell faces.png

几何关联

相关数学问题