一種RNA溫度計FourU的RNA模體SD序列高亮表示

RNA溫度計(RNA thermometer),亦稱RNA溫度傳感器(RNA thermosensor)是一類對溫度敏感的非編碼RNA,能隨溫度變化調控基因表达。RNA溫度計主要調控與熱休克和冷休克反應有關的基因,但與致病性飢餓狀態等過程相關的基因調控也有關係[1]

RNA溫度計一般通過二級結構的改變對溫度變化做出反應。結構的改變會使RNA上核糖體結合位點英语Ribosome-binding site等重要區域暴露或遮蔽,進而改變對應編碼基因轉譯速率。

RNA溫度計與核糖開關一樣,都是支持RNA世界假說的有力證據。RNA世界假說認爲RNA為早期生命的唯一組成成分,但隨生物進化,RNA攜帶遺傳信息的功能由DNA取代,RNA的生物催化活性由蛋白質取代,形成了今日的DNA-RNA-蛋白質系統[2][3]

RNA溫度計的實例有FourU溫度計英语FourU[4]Hsp90順式作用元件英语Hsp90 cis-regulatory element[5]ROSE元件英语Repression of heat shock gene expression (ROSE) element[6]以及Hsp17溫度計英语Hsp17 thermometer[7]

發現

溫度敏感的RNA元件於1989年首次發現[8]。不過,早在1986年,研究人員就發現λ噬菌體英语Lambda phagecIIImRNA轉錄開始位點上游的突變會影響cIII蛋白質的轉譯速率[9]。cIII蛋白質與λ噬菌體對溶原性循環英语lysogenic cycle裂解循環英语Lytic cycle的選擇有關,高濃度的cIII蛋白能促進溶原化[9]。進一步的研究表明cIII mRNA上游區域一定存在兩種二級結構英语Nucleic acid secondary structure之一。實驗表明,這兩種結構可以完全互換,其活性都依賴鎂離子濃度和溫度[8][10]。現在已知該結構就是RNA溫度計。該結構的作用即促進噬菌體在高溫壓力下轉入裂解循環,以保證噬菌體能快速複製,脫離原宿主細胞[1]

RNA溫度計這一名詞是在1999年提出的[11],最初, 該名詞用於描述大腸桿菌中發現的RNA元件rpoH[12]。2007年,研究人員通過生物信息學手段發現了一些可能爲新的RNA溫度計的序列[13]。使用傳統的序列-鹼基搜尋方法找尋RNA溫度計效率很低,因爲RNA溫度計的二級結構比一級結構(核酸序列)保守得多[13]

分佈

目前的觀點認爲,大部分RNA溫度計都位於編碼熱休克蛋白(HSP)的mRNA的5'端非轉譯區(UTR)。但有研究人員提出,在基因組數據中找尋非保守的短RNA序列本身就很難,加上採樣可能出偏差,因而得出了上述(不準確的)結論[14][15]

儘管絕大部分RNA溫度計都是在原核生物中發現的,但科學家亦於包括人在內的哺乳動物體內發現了可能爲RNA溫度計的非編碼RNA[16],即熱休克RNA-1(HSR1)。在人體內,這種RNA分子在溫度超過37攝氏度(即人的正常體溫英语ormal human body temperature)時能活化熱休克轉錄因子-1英语HSF1(HSF1)基因的表現,進而激活保護性蛋白的表現,達到防止細胞過熱的目的[16]

結構

RNA溫度計結構上很簡單,短RNA序列就能構成。目前已知最短的RNA溫度計發現於某種集胞藻體內(Synechocystis sp. PCC6803),只有44個核苷酸殘基(44nt)長,為編碼熱休克蛋白hsp17英语HSP17的mRNA[18][19]。大部分RNA溫度計的長度都介於60-110nt之間[20]。RNA溫度計通常都含有髮卡結構(莖環結構)。RNA溫度計的髮卡結構因爲有少量的錯配鹼基對,穩定性較差,因此在溫度升高後很容易去摺疊[21]

對RNA溫度計ROSE元件英语Repression of heat shock gene expression (ROSE) element的具體結構分析表明,G-G、U-U、UC-U等錯配的鹼基對之間以非標準的鹼基配對連結,有利於RNA雙螺旋結構的維持(如左圖所示)。另外,這些非常規的鹼基配對穩定性較差,溫度升高後,很容易就解開,使SD序列暴露[17]

一些RNA溫度計的結構遠比一個單一的髮卡結構複雜,比如,研究人員推測CspA mRNA5'端非轉譯區英语CspA mRNA 5' UTR含有一個假結與多個髮卡結構[22][23]

人工合成的RNA溫度計通常都設計成只含有一個簡單莖環結構[24]。然而,這樣的短RNA溫度計的二級結構英语Nucleic acid secondary structure對突變很敏感,即使是一個鹼基對的變化(點突變)也可能造成其莖環結構在體內(in vivo)失活[25]

機理

(RNA溫度計中)原本穩定的髮卡結構(左圖)在溫度升高後會解旋(右圖),使SD序列(以高亮標出)暴露,RNA溫度計得以與核糖體的30S亞基結合[1]

RNA溫度計一般位於mRNA5'端非轉譯區,即編碼基因的上游[1]。位於此處使得RNA溫度計能遮蔽核糖體結合位點(RBS),阻止mRNA轉譯爲蛋白質[14]。隨溫度增加,莖環結構會解旋,使核糖體結合位點或SD序列暴露,使得mRNA能與核糖體30S亞基(小亞基)結合。緊接着,轉譯機器會完成組裝[1]起始密碼子英语Start codon一般位於SD序列下游8個核苷酸殘基處[14]。從起始密碼子開始,轉譯正式開始,核糖體隨後能轉譯出一整條多肽鏈,到終止密碼子爲止[26]。除了這種順式作用機理外,在飢餓反應相關的RposS mRNA 5'非轉譯區英语RpoS mRNA 5'UTR中還發現了一個使用反式作用機理的特例。[1]

RNA溫度計的一個特例是腸道沙門氏菌Salmonella enterica)體內發現的FourU[4]。當處於大約45攝氏度的環境中時,SD序列所在區域的「莖」結構鹼基配對會解開,使mRNA能與核糖體結合,啓動轉譯[25]。已證明FourU的穩定性與Mg2+的濃度有關[27]。目前,研究得最透徹的RNA溫度計位於大腸桿菌E. coli)的rpoH基因中[28]。該RNA溫度計能在高溫環境下通過一種特殊的熱休克σ因子σ32上調熱休克蛋白的表現水平[11]

一般來說,RNA溫度計都與熱誘導蛋白質的表現有關,不過,RNA溫度計也能調控冷休克蛋白質的表現[22]。比如,嗜热栖热菌英语Thermus thermophilusThermus thermophilus)中兩種7kDa的蛋白質的表現就受RNA溫度計的調控[29],另外,在肠杆菌目中也發現了類似的調控機制[23]

病原體可利用對37攝氏度的溫度敏感的RNA溫度計激活感染相關基因的表現[14]。比如,在李斯特菌細胞內,一種調控與毒性相關的基因轉錄的關鍵蛋白由prfA基因編碼。研究人員設計了以下實驗證明RNA溫度計對prfA表現的上調英语Downregulation and upregulation:將PrfA溫度調控非轉譯區英语PrfA thermoregulator UTR與綠色螢光蛋白基因融合,再將其置於大腸桿菌的T7啓動子調控之下。於37攝氏度下,可以觀察到綠色螢光蛋白的表現,而在30攝氏度下無法觀察到[30]

對RNA世界學說的影響

RNA世界學說認為在早期生命中,RNA既是遺傳信息的載體,又具有生物催化活性。另外,還有RNA扮演基因表現調控和感受器的角色[31]。該學說認為,現在的DNA-RNA-蛋白質系統是由上述原始的RNA生物進化而來,因為DNA-RNA-蛋白質系統相對原始的RNA生物具有優勢,使用DNA-RNA-蛋白質系統的生物在自然選擇中勝過了RNA生命,成為現代生命的形式。DNA-RNA-蛋白質系統中,RNA攜帶遺傳信息的功能由DNA取代,其生物活性則由蛋白質取代。但仍然保留有部分具有催化活性的RNA,即核酶[2]

RNA溫度計以及核糖開關因爲其廣泛分佈於各物種之中,都被認爲是RNA生命向現代的DNA-RNA-蛋白質系統過渡時產生的進化遺蹟[32]。一般認爲,在早期的RNA世界中,RNA溫度計的作用是對其他的RNA分子進行溫度依賴性的調控[2][33]。在現代生物中,RNA溫度計可以說是一個RNA世界的良好分子化石[2]

其他實例